A New Lignan from Boschniakia himalaica

Li Hui LIU, Jian Xin PU, Jing Feng ZHAO, Shuang Xi MEI, Xiao Dong YANG, Yu Bo WANG, Hong Bin ZHANG, Liang LI*

School of Pharmacy, Yunnan University, Kunming 650091

Abstract: From the ethanol extract of the whole plant of *Boschniakia himalaica Hook. f. et.* Thoms, a new and two known lignans have been isolated and identified as 7-methoxypinoresino 1, pinoresinol 2, and pinoresinol-O- β -D-glucopyranoside 3 respectively. Their structures have been established by spectroscopic methods.

Keywords: Boschniakia himalaica, 7-methoxypinoresinol, pinoresinol-O- β -D-glucopyranoside.

Boschniakia himalaica Hook. f. et. Thoms, a plant of genus *Boschniakia* (Orobanchacese), is mainly distributed in Yunnan, Tibet, Shanxi, Sichuan, Hubei provinces of China¹. It is a folk Tibetan medicine. Chemical constituents of this species have not been reported previously. After a systematic chemical study, we isolated three lignans **1-3** from its *n*-BuOH extract. Their structures were determined as 7-methoxy-pinoresinol **1**, pinoresinol² **2** and pinoresinol-O- β -D-glucopyranoside³ **3** by 1D and 2D NMR spectrums. In this article, we report the isolation and structural indentification of compound **1**.

Compound 1 was isolated as white powder, mp 174–175°C, $[\alpha]_D^{24}$ +153.85 (*c* 0.01, pyridine). According to its EIMS (*m*/*z* 388[M⁺]), ¹H NMR and ¹³C NMR spectral data, its molecular formula was deduced to be C₂₁H₂₄O₇ ($\Omega = 10$), which was further confirmed by its HREIMS (*m*/*z* found. 388.1523, calcd. 388.1522). Its ¹H NMR (**Table 1**) showed six proton signals of benzene ring, four proton signals of two oxymethylenes,

^{*} E-mail: liliang5758@sina.com

Li Hui LIU et al.

three proton signals of methine , and three methoxyl signals. The ¹³C NMR (**Table 2**) and DEPT spectra exhibited signals of twelve aromatic carbons (six methine and six quaternary carbons), double oxymethylenes, three methines (one is an oxymethine, δ 90.3), one quaternary carbon , and three methoxyls. All of the above spectral data showed that the compound was a lignan. In comparison with the NMR spectra of the known compound 2 (pinoresinol) which was isolated from the same plant, the signals of 1 were in agreement with those of 2 except for an extra signal of methoxyl group ($\delta_{\rm H}$ 4.24, s; $\delta_{\rm C}$ 50.5 q).

Table 1The assignment of ${}^{1}H$ NMR signals of compounds 1 and 2
(300MHz, pyridine- d_5 , δ in ppm)

No.	1	2	No.	1	2
2	8.51 (s)	6.82 (s)	2'	8.33 (s)	6.28 (s)
5	8.38 (d, 8.07)	6.80 (d, 8.08)	5′	8.38 (d, 8.07)	6.80 (d, 8.08)
6	8.40 (dd, 1.52,	6.73(dd,	6′	8.22 (dd, 1.52,	6.73 (dd, 1.54,
	8.07)	1.54,8.08)		8.07)	8.08)
7		4.66 (d, 4.33)	7′	5.86 (d, 6.55)	4.66 (d, 4.33)
8	4.71 (m)	3.03 (m)	8′	4.34 (m)	3.03 (m)
9	4.53 (t, 8.87)	3.79 (dd, 3.69,	9′	5.32 (brs)	3.79 (dd, 3.69,
	5.19 (t, 8.94)	9.21)			9.21)
		4.17 (dd, 6.88,			4.17 (dd, 6.88,
		9.21)			9.21)
3-OCH ₃	4.88 (s)	3.81 (s)	3'-OCH3	4.90 (s)	3.81 (s)
7-OCH ₃	4.24 (s)				

Table 2 The assignment of 13 C NMR signals of compounds 1 and 2(75MHz, pyridine- d_5 , δ in ppm)

No.	1	2	No.	1	2
C-1	131.4 s	133.3 s	C-1′	135.1 s	133.3 s
C-2	113.3 d	109.0 d	C-2′	112.8 d	109.0 d
C-3	150.5 s	147.1 s	C-3′	150.8 s	147.1 s
C-4	150.2 s	145.6 s	C-4′	149.9 s	145.6 s
C-5	118.3 d	114.7 d	C-5′	118.4 d	114.7 d
C-6	122.7 d	119.4 d	C-6′	121.8 d	119.4 d
C-7	113.0 s	86.3 d	C-7′	90.3 d	86.3 d
C-8	59.4 d	54.5 d	C-8′	55.8 d	54.5 d
C-9	72.8 t	72.1 t	C-9′	71.8 t	72.1 t
3-OCH ₃	57.9 q	56.3 q	3'-OCH ₃	57.9 q	56.3 q
7-OCH ₃	50.5 q				

In order to determine the position of the extra methoxyl group, its HMBC spectrum was studied. In the HMBC spectrum, the correlation of the methoxyl proton with C-7 (δ 113.0) indicated that the methoxyl group is linked at C-7. The full assignments of all the protons and carbons in compound **1** were made by means of ¹H NMR, ¹³C NMR, HMQC, HMBC. Thus, the above evidence led to the establishment of the structure of

compound 1 as 7-methoxypinoresinol.

References

- Delectis florae reipulicae popularis sinicae agendae academiae sinicae edita, *Flora Reipublicae Popularis Sinicae*, **1990**, 69, 72.
 S. F. Fonseca, T. Lawrence, Nielsen *et al.*, *Phytochemistry*, **1979**, *18*, 1703.
 S. D.Jolad, J. J.H., Jack R. Cole, *J. Org. Chem.*, **1980**, 45, 1327.

Received 11 December, 2002